Thursday, September 17, 2009
tugas basis dataq
NAMA BUDI HARYANTO (H11107048)
Data adalah fakta atau sesuatu yang benar adanya mengenai suatu objek tertentu sehingga dalam satu objek dapat memiliki banyak data tentang objek tersebut. Dan menurut hasil diskusi di sebuah yahoo chat “data menunjukan keakuratan bahwa berita itu punya sumber yang dapat di pertanggung jawabkan sesuai tanggal yang di dapat (tidak up to date)” di kutip dari: http://id.answers.yahoo.com/question/index?qid=20071208030944AAsktth.
Informasi adalah suatu penjelasan tentang suatu objek sehingga dengan mudah kita mengetahui sifat atau penjelasan mengenai objek tersebut. Jadi informasi ini merupakan hasil analisis dan sintesis daripada data, yang di maksud data disini bukanlah data dasar karena data dasar tidak dapat di pecah lagi, tetapi data secara keseluruhan mengenai objek.
sedangkan basis data adalah kumpulan data yang menggambarkan aktifitas suatu organisasi atau perusahaan yang saling berelasi atau berhubungan.
Perbedaan data dasar dan informasi adalah:
data dasar adalah data tunggal mengenai suatu objek tertentu yang benar adanya dan tidak di rekayasa, data dasar tidak bisa berubah-ubah
informasi itu mengikuti kebutuhan setiap waktu (up to date). Sehingga informasi dapat bertambah.
Contoh data dasar:
nama : indra
kota asal : merauke
pekerjaan : polisi
contoh bukan data dasar:
umur :12
tinggi badan: 165 cm
berat badan : 58 kg
contoh informasi:
nama : indra
kota asal : merauke
pekerjaan : polisi
dari data di atas kita memiliki informasi bahwa indra berasal dari merauke dan pekerjaannya adalah seorang polisi.
2. bulan: januari
jumlah transaksi: 10
jenis transaksi: pembelian
dari data diatas kita dapatkan informasi bahwa pada bulan januari telah terjadi 10 kali transaksi pembelian.
3. nama: arya
nim :h11107089
jurusaan : matematika
universitas: Hasanuddin
alamat : ramsis unhas
dari data diatas maka di peroleh informasi bahwa Arya adalah mahasiswa UNHAS jurusan matematika no induk mahasiswa nya h11107089 dan tinggal di ramsis unhas.
referensi:BASIS DATA DAN DBMS
Asep Herman Suyanto
sep-hs@mail.ugm.ac.id
ttp://www.asep-hs.web.ugm.ac.id
Saturday, September 5, 2009
contoh analisis data
EKSPLORASI DATA
adanya penyimpangan-penyimpangan dari suatu model tertentu dan berusaha untuk mencari cara penyelesaiannya.Teknik eksplorasi data dengan menggunakan sarana grafik sangatlah efektif dalam analisis data. Berikut contoh peranan grafik untuk menemukan adanya kelainan-kelainan tahap awal dalam analisis regresi berdasarkan data Anscombe dalam Ryan, T.P. (1997) sebagai berikut. Eksplorasi data adalah kegiatan mencari mengumpulkan cara menyajikan atau mengolah data yang besar, dalam multivariable sehingga mudah dipahami atau dibaca oleh orang lain. Seblum menganalisa data kita harus melakukan penelusuran dan mengungkapkan struktur dan pola data tersebut. tanpa mengaitkan secara kaku pada asumsi-asumsi tertentu. Tujuan eksplorasi semacam ini tidak hanya untuk memberi keyakinan bahwa data tersebut dapat diwakili oleh suatu model, akan tetapi yang lebih penting adalah dalam mengungkapkan adanya penyimpangan-penyimpangan dari suatu model tertentu dan berusaha untuk mencari cara penyelesaiannya. (Aunuddin,1989) Eksplorasi data secara grafis menjadi alat peraga yang cukup efektif, sederhana dan mudah dipahami oleh siapapun. Untuk struktur data dengan banyak variabel (multivariate) dibutuhkan metode yang sangat representatif, karena pada umumnya struktur data dengan banyak variabel membutuhkan penanganan yang jauh lebih sulit dibanding dengan struktur data 2 atau 3 variabel. jika dalam analisis suatu data langsung dilakukan dengan pengujian hipotesis, maka akan diperoleh kesimpulan yang bias dari data sebenarnya. Contoh di atas adalah gambaran jika seorang peneliti ingin melihat pengaruh variabel bebas terhadap variabel terikat dan tanpa tahu struktur data sebenarnya langsung membuat analisis regresi, maka kesimpulan yang diperoleh akan berbias. (Sumber: Muji Gunarto, 2004. Panduan Penelitian Kuantitatif dengan Aplikasi Program SPSS, Mc Cendekia Research and Statsitics Consulting,
Yaitu asumsi normalitas pada analisis univariat (satu variabel). Asumsi normalitas adalah suatu asumsi bahwa data yang akan dianalisis mengikuti suatu distribusi normal pada suatu variabel.Ada beberapa metode yang adapat digunakan untuk melihat kenormalan sebaran data baik secara visual maupun secara inferensial. Metode secara visual dapat dilakukan dengan membuat grafik (histogram) dari data tersebut. Sedangkan secara inferensial dapat dilakukan dengan analisis statistik nonparametrik seperti: 1) Uji Lilliefors, 2) Uji Kolmogorov Smirnov (K-S) atau 3) Uji Normalitas Chi-Kuadrat (X2). Uji Lilliefors dan Uji Kolmogorov Smirnov
dilakukan jika datanya minimal memiliki skala ordinal, sedangkan uji Chi-Kuadrat dapat dilakukan untuk data yang memiliki skala minimal nominal.
Manfaat eksplorasi data adalah akan mempermudah kita dalam membaca suatu data dan memahami data, sehingga data yang berukuran besar dapat disajikan dalam sbuah model yang lebih sederhana. Kita dapat melakukan pengecekan jenis2 data secara statistic dengan mudah dengan bantuan software pengolah data seperti spss, excel dll.kita juga dapat melihat grafik fungsi data yang telah diolah, sehingga akan mempermudah kita dalam memahami deskripsi data tersebut.data juga dapat diolah dalam bentuk table, gambar dan uji statistic langsung. Dengan eksplorasi data tentu akan mempermudah kita dalam melakukan proses uji statistic, karena data telah disajikan secara lebih sederhana. Eksplorasi data juga membantu perencana memahami lebih jauh makana spasial atau keruangan yang terkandung dalam informasi geographis. Dengan eksplorasi data juga dapat di analisis dengan lebih mudah.Selain itu eksplorasi data juga akan membantu kita dalam mengambil sebuah keputusan, karena informasi data dapat kita peroleh dengan cepat. Kemudian data dapat dipaparkan secara baik, jika terjadi perubahan data maka perubahan akan mudah di perbaiki, data akan lebih cepat dan mudah di analis.
Kekurangan eksplorasi data, yaitu dibutuhkannya pengetahuan dan biaya yang cukup besar karena berbasis computer.
- Potential problems with analyses involving missing data. Potensi masalah dengan analisis yang melibatkan data hilang. These can be insidious, in that the unwary user is unlikely to realize that anything is wrong. Ini bisa busuk hati, dalam hal tak awas pengguna tidak akan menyadari bahwa sesuatu adalah salah.
- Lack of flexibility in analyses that can be done due to its expectations regarding the arrangement of data. Kurangnya fleksibilitas dalam analisis yang dapat dilakukan karena harapan tentang pengaturan data. This results in the need to cut/paste/sort/ and otherwise rearrange the data sheet in various ways, increasing the likelyhood of errors. Ini hasil yang harus dipotong / sisipkan / sort / dan lain ulang data Sheet dalam berbagai cara, meningkatkan kemungkinan terjadinya kesalahan.
- Output scattered in many different worksheets, or all over one worksheet, which you must take responsibility for arranging in a sensible way. Output tersebar di berbagai worksheet, atau semua lebih dari satu worksheet, yang harus bertanggung jawab untuk mengatur di jalan masuk akal.
- Output may be incomplete or may not be properly labeled, increasing possibility of misidentifying output. Output mungkin tidak lengkap atau tidak dapat diberi label dengan benar, meningkatkan kemungkinan misidentifying output.
- Need to repeat requests for the some analyses multiple times in order to run it for multiple variables, or to request multiple options. Harus mengulangi permintaan untuk beberapa analisis beberapa kali untuk menjalankannya untuk beberapa variabel, atau meminta beberapa pilihan.
- Need to do some things by defining your own functions/formulae, with its attendant risk of errors. Perlu melakukan beberapa hal dengan mendefinisikan sendiri fungsi / formulae, hadir dengan risiko kesalahan.
- No record of what you did to generate your results, making it difficult to document your analysis, or to repeat it at a later time, should that be necessary. Tidak ada catatan apa yang Anda lakukan untuk hasil Anda, sehingga sulit untuk dokumen analisis Anda, atau untuk mengulang di lain waktu, sebaiknya yang perlu dilakukan.
CONTOH:
Sebuah pabrik sepatu sedang mengembangkan produk sepatu baru. Sebelum meluncurkan produk baru tersebut, divisi pemasaran melakukan riset untuk mengetahui seperti apakah desain dan warna produk yang diminati oleh konsumen, dimana target pasar yang dibidik adalah kelas menengah.
Awalnya bagian Promosi melakukan riset kecil berupa penyebaran kuisioner kepada pelanggan untuk mengetahui penting tidaknya suatu atribut beserta tarafnya. Kemudian diketahui ada 2 atibut yang dinilai berperan mempengaruhi responden (konsumen). Penelitian dilakukan terhadap 2 responden.
setelah dibuat stimuli, ke-2 responden tersebut melakukan ranking terhadap stimuli yang ada. Dimana angka 1 adalah model sepatu yang paling tidak disukai, dan angka terakhir adalah model sepatu yang paling disukai.buatlah dengan analisis konjoin untuk menyimpulkan seperti apa model sepatu yang disukai konsumen?
Atribut | Taraf | Keterangan |
Desain | 1 2 | Bertali Tanpa tali |
Warna | 1 2 3 | Hitam Putih Lainnya (selain hitam dan putih) |
logika matematika
http://www.ziddu.com/download/6371132/MATERI2.ppt.html
disini dibahs tentang logika matematik... bagi yang masih sma bisa juga dijadikan bahan literatur... o iya bagi temen2 yang masih sma ato smp klo ada maslah dengan matematika q siap bantu... tpi ya... semampu q... ok... q sih mash kuliah... di unhas... he...3x thanks sebelumnya... semoga bermanfaat...